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Background: Stem cell-derived by conditioned medium has po-
tential as regenerative agent of skin cells because it contains many
growth factors, cytokines and other regenerative biomolecules.
Conditioned medium (CM) from human adipose tissue-derived
MSCs (CM-hATMSCs) also has been known enriched growth fac-
tors that play an important role in epithelial wound repair, reduce
wrinkles, and enhance wound healing.
Objective: This study was performed to evaluate growth factors in
CM such as Transforming Growth Factor (TGF)-b1, TGF-b2,
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Fresh frozen plasma
Wound healing
Vascular Endothelial Growth Factor (VEGF)-2, Vascular Cell
Adhesion Molecule (VCAM) 1, Epidermal Growth Factor (EGF),
Fibroblast Growth Factor (FGF) in CM-hATMSCs treated with Fresh
Frozen Plasma (FFP) and non-FFP at various passages.
Methods: This study used ELISA method to measure the growth
factors in CM-hATMSCs.
Results: FGF was the highest modulator among FFP and non-FFP-
treated cells at many passages compared to the others growth
factor. Both FFP and non-FFP-treated cells showed significant dif-
ference (P < 0.05) in some growth factors. However, there was no
significant differences in TGF-b1 at passage 3,7,11 and 15 in FFP-
treated cells and non-FFP-treated cells.
Conclusion: In summary, the highest concentration level found in
CM-hATMSCs is FGF both in FFP and non-FFP-treated cells. FGF as
growth factor composition in CM-hATMSCs has potential as
wound healing and regeneration of cell and it can be used in anti-
aging products.

© 2019 The Authors. Published by Elsevier Ltd on behalf of
European Society for Clinical Nutrition and Metabolism. This is an

open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Tissue engineering has become the new promising therapies. Human mesenchymal stem cells
(hMSCs) are the sources of adult stem cells for cell therapy and tissue engineering [1]. hMSCs are the
powerful source for tissue repair because it has the multi-potency differentiation capability, easy to
acquire, easy harvesting process and culture, fast in vitro expansion, the feasibility of autologous and
allogenic therapy, and a powerful paracrine function. Adipose-derived stem cells (ATMSCs) are a
population of cells derived from adipose tissue that are relatively easy to obtain from adipose tissue
and are more frequent than MSCs in bone marrow [2], easy access and high cell numbers [3]. ATMSCs
also exhibit multilineage development potential and are able to secrete various factors, which in-
fluence adjacent cells. Previous studies have reported the effectiveness of ATMSCs conditioned
medium (CM-ATMSCs) in wound healing, anti melanogenesis, wrinkle improvement and hair
growth [4].

Conditioned medium (CM) contains various growth factors and tissue regenerative agents, which
were secreted by the stem cells [5]. CM from MSCs involves collagen synthesis and suggest that CM-
MSCs might be a potential candidate for preventing UV-induced skin damage [6]. CM is rich in
growth factors and cytokines which will satisfy regulatory requirements and expected to have less
stringency compared to stem cell therapy products in the form of cell preparation [7]. CM is ‘cell-free’
there no risk of Graft Versus Host Disease (GvHD) and no side effects provided cord tissue donor is
screened, tested and is free from infectious diseases [7].

The CM from stem cells has growth factors and cytokines such as VEGF Platelet-derived Growth
Factor (PDGF), Hepatocyte Growth Factor (HGF), basic Fibroblast Growth Factor (bFGF), Macrophage
Stimulating Protein (MSP), Keratinocyte Growth Factor (KGF) and Insulin-like Growth Factor 1 (IGF-1)
[8]. These cytokines and growth factors play active in regeneration of cell and angiogenesis [9]. In
culture media, fetal bovine serum (FBS) usually used as a standard, but its substitution is required to
avoid any disadvantages such as cell contact with animal compounds. The human blood-derived has
beenwidely conducted as it is have several advantages compared to FBS [10]. Therefore, we conducted
our research to evaluate the concentration of each modulator in early, moderate, late passage in
different medium (FFP and non FFP).

http://creativecommons.org/licenses/by-nc-nd/4.0/
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2. Materials and methods

2.1. Isolation and expansion of hATMSCs

Adipose tissue resulted from 3 donors female liposuctionwith 25e30 years old were put into schott
bottle 250 ml or 500 ml fulfilled with transport medium 80% MEM-a (Gibco, A1049001), 1% Antibiotic
and antimycotic (Gibco, 15240062) and FFP (Indonesia Red Cross, Bandung) in ice bag with informed
consent using the guidelines approved by the Institutional Ethics Committee at Universitas Padjad-
jaran, West Java, Indonesia (No:1062/UN6.C1.3.2/KEP/PN/2016). After that, the fat was filtered by cell
strainer 100 mm (SPL, 93100) andwashedwith phosphate buffered saline (PBS) (Gibco,14200075), then
transferred into 15 ml tube (SPL, 50015). Briefly 30 ml of 0.075% collagenase type I (Gibco, 17100017)
was added into tube and centrifuged (MPW-2000) at 1200 rpm,10 min at room temperature. Then, the
cell pellet was inserted into flask with completed medium consist of 80%MEM-a, 20% FFP, 1% antibiotic
and antimicotic and 1% heparin (Inviclot, IH2983) [11e14].

2.2. hATMSCs culture and CM-hATMSC preparation

hATMSCs cells of P2 were seeded at density 104 cells/cm2 on plastic-surfaced culture disks with
80% MEM-a, 20% FFP, 1% antibiotic and antimicotic, 1% heparin incubated in a humidified, 37 �C, 5%
CO2, when cultures reached 80% confluences, cells were detached using 0.25% trypsin EDTA solution
(Gibco, 25200072). Detached cells were cultured in another flask until confluence was achieved for
P3. Briefly, themediumwas collected and centrifuged at 1600 rpm for 5min at room temperature, and
the supernatant was filtered by a 0.22 mm filter unit (TPP, 99722) and used as CM-ATMSCs and stored
in �80 �C [15e17].

2.3. Measurement of growth factor level in CM-hATMSCs (TGF-b1, TGF-b2, VCAM1, VEGF2, FGF, EGF)

Some growth factors that presence in CM-hATMSCs were measured using ELISA Assay (Elabscience,
H0110 (TGF-b1); H1587 (TGF-b2); H5587 (VCAM1); H0111 (VEGF2); H0483 (FGF); H0059 (EGF)). One
hundred microlitres of sample and standard working solution was prepared approximately in each
well, and then incubated 90 min at temperature of 37 �C. The solution in each well was removed and
then added with biotinylated detection Abworking solution (100 ml). The solutionwas mixed up gently
then incubated at 37 �C, for 60 min. After incubation, the solution was aspirated from each well then
added wash buffer (350 ml) and soaked for 1e2 min, this method was replicated three times. HRP
conjugate working solution (100 ml) was added, then incubated again for 30 min, at 37 �C. After in-
cubation, the solutionwas washed again five times with 350 ml of wash buffer. Briefly, 90 ml of substrate
reagent was added and then incubated until the color changed into blue. Incubationwas done again in
15min at temperature of 37 �C (protected from light). After that, the solutionwas addedwith 50 ml stop
solution (the solution changed color into yellow). Absorbance was measured at 450 nm using ELISA
reader (Multiskan Go, Thermo Scientific, USA) [16].

2.4. Statistical analysis

Data are presented as mean and standard deviation, the differences among groups were analyzed
using one-way analysis of variance (ANOVA) with SPSS 20.0 statistical package, and p < 0.05 were
considered as statistically significant, along with Tukey post hoc test and 95% confidence interval and
independent t-test for comparing between two treatments.

3. Results

Samples used were treated with Fresh Frozen Plasma (FFP) and without FFP at many passage.
Growth factors that were observed in this study are TGF-b1, TGF-b2, VEGF, VCAM1, EGF, and FGF. Figs. 1
and 2 describe the result of VCAM1, VEGF, EGF, FGF, TGF-b1, TGF-b2 level of CM-hATMSCs treated FFP



Fig. 1. The concentration of growth factors of CM-hATMSCs (VCAM1, VEGF, EGF, FGF, TGF-b1, TGF-b2) treated with FFP at passage 3 (A), 7 (B), 11 (C) and 15 (D). The growth factors content
were measured in triplicate. The histogram are presented as mean ± standard deviation. Different small letters show significant difference among modulators (P < 0.05) in P3 (Fig. 1A), in P7 (Fig.
1B), in P11 (Fig. 1C), and in P15 (Fig. 1D), which the data was analyzed using ANOVA and Tukey post hoc test.
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and without FFP at P3, P7, P11 and P15, respectively. Fig. 3 describe the comparison between FFP and
without FFP at P3, P7, P11 and P15 of VCAM1, VEGF, EGF, FGF, TGF-b1, TGF-b2 level.

Based on Fig. 1, FGF has the highest concentration level of growth factors observed at each passage
compared to the others passage. At P3, FGF concentration is 1941.83 pg/ml (Fig. 1A) while TGF-b2 is the
lowest concentration in P3 with concentration 21.11 pg/ml. At P7, FGF concentration is 3260.50 pg/ml
(Fig. 1B) while TGF-b2 is the lowest concentration (13.24 pg/ml). At P11, FGF concentration is
2960.33 pg/ml (Fig. 1C) while TGF-b2 is the lowest concentration (9.64 pg/ml). At P15, FGF concen-
tration is 1259.17 pg/ml (Fig. 1D) while TGF-b2 is the lowest concentration (5.78 pg/ml). From these
results, it also shown that FGF had the highest concentration at P7.

The growth factors level of each sample treatedwithout FFP is shown in Fig. 2. Based on Fig. 2, FGF is
the highest concentration level compared to other modulators. At P3 (Fig. 2A), FGF concentration is
1404.17 pg/ml, while TGF-b2 is the lowest concentration (9.11 pg/ml). At P7 (Fig. 2B), FGF concentration
is 1698.17 pg/ml, while TGF-b2 is the lowest concentration (5.13 pg/ml). At P11 (Fig. 2C), FGF con-
centration is 1271.33 pg/ml, while TGF-b2 is the lowest concentration (5.04 pg/ml). At P15 (Fig. 2D), FGF
(682.50 pg/ml), while TGF-b2 is the lowest concentration (2.49 pg/ml). From the result, it also shown
that FGF had the highest concentration at P7.

Fig. 3 showed that the concentration level of each modulator and comparison between FFP and non-
FFP-treated cells. FGF concentration at P7, 11, and 15 in FFP-treated ATMSCs are significantly different
compared to non-FFP. Concentration level of FGF is higher in FFP-treated ATMSCs thanwithout non-FFP.

4. Discussion

FFP is blood product made from the liquid portion of whole blood, it used as part of plasma ex-
change, a complex mixture of water, proteins, carbohydrates, fats, and vitamins, and has similar
characteristic as Platelet Rich Plasma (PRP) [18]. TheWJ-MSCs cultured in medium supplemented with
human platelet from donor with blood type O and AB (huPL-ABO) had lower PDT compared to FBS
medium in passage 1 to 8 [19]. Growth factors released by platelets in huPL-ABO are effective to
stimulate proliferation of WJ-MSCs in vitro [19], this result was in line with previous study that
hATMSCs cultured in FFP resulted higher proliferation or lower PDTcompared to non FFPmedium [20].
This result data shows that higher FFP medium increased cells proliferation, this result was consistent
with previous study that growth factors influence cell proliferation, motility, survival and morpho-
genesis [21].

In comparison, previous study using Platelet Rich Plasma (PRP) supplementation, several growth
factors has been observed such as FGF, TGFb, and VEGF and were at their highest concentration when
the proliferation was most enhanced [22]. The cell culture media supplemented with human platelet
lysate with AB and O blood type (huPL-ABO) has a higher proliferation cell rate compared with FBS
supplemented, high secretion of growth factor in huPL such as platelet-derived growth factor-AB
(PDGF-AB), Insulin-like growth factor-1 (IGF-1), TGF-b1 and VEGF [19].

ATMSCs contained various growth factors such as (VCAM1, VEGF2, EGF, FGF, TGF-b1, TGF-b2 (Figs.
1e3), this result was consistent with previous study that MSCs produce MSCs produce various factors,
like Ang-1, VEGF, HGF, EGF, PDGF, FGF, KGF and TGF-b [23].

In this study, FGF was the highest concentration compared to other growth factors FFP-treated
media and non FFP in P7. FFP and non FFP treated media contained FGF which is in line with previ-
ous study that stimulation of FGF is correlated with the upregulation of the expression of anti-
angiogenic miR-223 and that the effect of FGF from adipose mesenchymal stem cell-derived extra-
cellular vesicles (AMSC-EVs) are antagonized by the inhibition of miR-223 [24]. FGFs are a family of
growth factors involved in wound healing and angiogenesis [21]. Meanwhile, FGF acts to stimulate
fibroblast and keratinocyte proliferation [25]. FGF-2 (bFGF) induces differentiation of MSCs to adipo-
genic, chondrogenic, osteogenic [26,27]. Moreover, bFGF is a factor necessary for MSCs expansion and
viability [27,28]. FGF2 is a more potent as angiogenic factor compared to VEGF [29].

TGFb exists as three isoforms: TGFb-1, TGFb-2 and TGFb-3 which induce proliferation of MSCs and
chondrocyte formation [21,30]. TGF-b2 in FFP and non FFP at the P15 showed low concentration. TGF-
b1 expression increases in various tissues with damage, especially when accompanied by inflam-
mation [31]. TGF-b1 and another isoform TGF-b2 (at low concentration) do not promote



Fig. 2. The concentration of growth factors of CM-hATMSCs (VCAM1, VEGF2, EGF, FGF, TGF-b1, TGF-b2) treated with non FFP at passage 3 (A), 7 (B), 11 (C) and 15 (D). The growth factors
concentration were measured in triplicate. The histogram are presented as mean ± standard deviation. Different small letters show significant difference among modulators (P < 0.05) in P3
(Fig. 2A), in P7 (Fig. 2B), in P11 (Fig. 2C), and in P15 (Fig. 2D), which the data was analyzed using ANOVA and followed by Tukey post hoc test.
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Fig. 3. The concentration of growth factors of CM-ATMSCs (VCAM1, VEGF2, EGF, FGF, TGF-b1, TGF-b2) treated with FFP and non FFP at passage 3 (A), 7 (B), 11 (C) and 15 (D). The growth
factors concentration were measured in triplicate. The histogram are presented as mean ± standard deviation. P3 (Fig. 3A), in P7 (Fig. 3B), in P11 (Fig. 3C), and in P15 (Fig. 3D). Asterisk symbol
shows significant difference in modulators at difference treatment between FFP and non FFP (P < 0.05) which was analyzed with independent sample t-test.
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immunosuppression, it reversed the immunosuppressive effect on exerted by activated MSCs, and
this effect is through inhibiting inflammatory cytokine-induced iNOS expression in an SMAD3 [32].
The stem cell-derived secreted factors showed that the secreted factor alone without the stem cell
itself may cause tissue repair in various conditions that involved tissue/organ damage [33]. Dedif-
ferentiated adipocytes CM which contain TGF-b1 may be useful for aged skin, which stimulate
collagen synthesis and accelerate collagen degradation in human dermal fibroblast [34]. TGF-b is
involved in a number of processes in wound healing: inflammation, stimulating angiogenesis,
fibroblast proliferation, collagen synthesis and deposition and remodelling of the new extracellular
matrix [35,36], play a pivotal role in skin aging [37].

ATMSCs secreted EGF both in FFP and non FFP supplementation, this result was consistent with
previous study [9,23]. EGF has ability such as wound healing, tissue regeneration, neurogenesis [23].
EGF has played role in skin generation through the epidermal stem cells from mitogenic effects and
differentiation of skin stem cells [38]. EGF promote ex vivo expansion of MSCs without triggering
differentiation into any specific lineage [21,39]. EGF increased NIH3T3 cell proliferation in a bell-shaped
dose response, and the maximum cell proliferation was achieved at a concentration of 25 ng/ml [40].
EGF has ability such as skin rejuvenation, production of collagen, elastin, ECM remodeling [41].

VCAM-1 was lower at older passage, higher significant difference FFP compared to non FFP (Fig. 3).
This result was consistent with previous study that the expression of VCAM-1 was most markedly
decreased among the tested markers in the senescent MSCs [42], VCAM-1 affect aging in MSCs [43].
Activation of lymphocyte-associated MMPs is delayed by hours after binding to VCAM-1, and this
activation is blocked by inhibition of endothelial cell ROS generation [44]. VCAM-1mediates leukocyte-
endothelium adhesion, and elevated levels of circulating soluble form has been related to systemic
inflammation disease [45]. Older passage of MSCs has lower angiogenesis activity compared to early
passage, whereas early-passage of MSCs (P2-3) exhibited a significantly higher DNA damage response
(DDR) capacity than late-passage cells [46], the cellular senescence can be regarded as a permanent
DNA damage response activation [45]. Shortening telomeres produces a persistent DDR, which acti-
vates and sustains the senescence growth arrest [45,47,48], in the early passage, MSCs secreted higher
VCAM-1 than late passage. The MSCs reduced migratory, and homing ability [45].

CM-hMSCs treatments have ability to improve cutaneous wound healing. CM-hMSCs can stimu-
lated the migration of dermal fibroblasts and increased their expression level of genes to wound
healing process [49]. Other study showed, ATMSCs and their secretory factors can stimulate collagen
synthesis and migration of fibroblasts during the wound healing process via activation of dermal fi-
broblasts or growth factors [50]. Dermal of fibroblasts cell (NBL-6) can migrated more rapidly in cell
culture in CM than controls, that may increase injury more rapidly [49]. WJ-MSCs release the various
cytokines of wound healing such as TGF-bs, CTGF, HIF-1a, VEGF, FGF-2, which can promote the syn-
thesis of collagen and also sirtuin-1 (SIRT-1) as antiaging genes [51]. Passage affect cytokines (IL1-a, IL-
6, IL-8) and growth factor (VEGF) level secretion in human Wharton's Jelly MSCs (WJMSCs) [16]. The
VEGF level of ATMSCs (Figs. 1 and 2) are higher than VEGF of CM-WJMSCs 24.96e51.86 pg/ml [17]. CM-
ATMSCs which secrete TGF-b1 is reported to stimulate collagen synthesis and hyaluronic acid synthase
(HAS) expression [42]. In other study, CM from bone marrow MSCs (CM-BMMSCs) which contain
growth factorsmay help in skin rejuvenation and has effect on anti-aging. The CM is also able to protect
skin fibroblast from UV-B radiation and ter-buthylhydro peroxide (tbOH) induced oxidative stress [52].

CM from adipose tissue-derived MSCs (CM-hATMSCs) may increase migration, proliferation of fi-
broblasts in vitro and accelerate of healing process. CM-MSCs has produce some angiogenic factor that
induce proliferation and differentiation of endothelial cell [49,53]. In regeneration of cell, CM-ATMSCs
also showed significantly increased the number of cells in G1 phase while reducing the number of cells
in the S and G2/M phases in cell cycle analysis [4]. CM-ATMSCs can induce G0/G1 growth arrest in
U251 cells [54]. CM-ATMSC also inhibited melanoma (skin cancer) growth by altering cell-cycle dis-
tribution and inducing apoptosis in vitro [55].

5. Conclusion

The highest concentration level found in CM-hATMSCs is FGF both in FFP and non-FFP treated
medium compared to the other mediators. CM-hATMSCs is promising wound healing and able to
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regenerate the cells and it can be used for anti-aging products because it contains many growth factors
such as TGF-b1, TGF-b2, VEGF2, FGF, VCAM1, and EGF.
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