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Abstract

Epitope-based peptide vaccine can elicit T-cell immunity against SARS-CoV-2 to clear the

infection. However, finding the best epitope from the whole antigen is challenging. A peptide

screening using immunoinformatics usually starts from MHC-binding peptide, immunoge-

nicity, cross-reactivity with the human proteome, to toxicity analysis. This pipeline classified

the peptides into three categories, i.e., strong-, weak-, and non-binder, without incorporating

the structural aspect. For this reason, the molecular detail that discriminates the binders

from non-binder is interesting to be investigated. In this study, five CTL epitopes against

HLA-A*02:01 were identified from the coarse-grained molecular dynamics-guided immu-

noinformatics screening. The strong binder showed distinctive activities from the non-binder

in terms of structural and energetic properties. Furthermore, the second residue from the

nonameric peptide was most important in the interaction with HLA-A*02:01. By understand-

ing the nature of MHC-peptide interaction, we hoped to improve the chance of finding the

best epitope for a peptide vaccine candidate.
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Introduction

The increasing variants of SARS-CoV-2 viruses raised concerns about the vaccine’s effective-

ness, which currently is based on the whole-inactivated virus, mRNA, adenovirus viral vector,

and recombinant protein [1,2]. Furthermore, since the new variant mutations occur on the

surface epitope of spike protein, they might escape from the existing spike-based vaccine-

induced neutralizing antibodies [3–5]. Therefore, it is important to develop a vaccine based on

the conserved epitopes, yet immunogenic, to elicit a broad immune response towards many

variants of Covid-19, including Omicron and its derivatives.

A successful trial of a peptide-based Covid-19 vaccine showed broad protection against

many problematic SARS-CoV-2 variants [6,7]. It is specifically designed to elicit T-cell immu-

nity against the virus rather than the neutralizing antibody [8]. This kind of vaccine could be

used as a booster to strengthen cellular immunity to clear the infection and halt the progres-

sion of the infection into a severe disease [9]. Also, it may be helpful for people who did not

mount enough strong immune responses after the vaccine shot due to B-cell deficiencies [8].

Some studies suggest that people who have recovered from Covid-19 have T-cells that hunt

and kill the infected cells, even in some who did not produce antibodies to the virus. Interest-

ingly, Covid-19 specific T-cell immunity was also found in some people been not exposed to

SARS-CoV-2 [10–12]. It is suggested that they had a history of infection by genetically similar

common human coronaviruses [13,14].

This study is not meant to disregard the significance of B-cell epitopes in vaccine develop-

ment. Instead, we choose the T-cell epitopes discovery as a case study to incorporate the

molecular detail of peptide-MHC binding. Ideally, vaccines should elicit B-cell (neutralizing

antibody) and T-cell responses, including CD8+ and CD4+ T-cell responses. However, in

Ad26.COV2.S and BNT162b2 case studies, T-cell responses have been found to have cross-

reactivity against different variants of SARS-CoV-2, including the Omicron variant, but not

humoral response [15]. CD8+ T cells have been shown to contribute to protection against

SARS-CoV-2, especially when antibody responses are suboptimal. Therefore, the inclusion of

T cell responses in addition to antibody responses in vaccines is essential for robust protection

against severe disease caused by SARS-CoV-2.

It is implied that some identical epitopes between human coronavirus and SARS-CoV-2

resulted in protective antibodies to Covid-19. It is worth noting that T-cell immunity also

showed long-term protection [16,17]. T-cell vaccines might offer fast-response immune pro-

tection, clearing the virus rapidly, even before the infected person becomes symptomatic [9].

However, despite all the advantages of peptide-based vaccines, some concerns should be care-

fully considered when designing the peptide. Peptide epitopes alone have low immunogenicity,

stability, and antigen uptake [18]. Therefore, liposome which contains danger signals such as

Pam2Cys may overcome such problems [19].

On the bright side, peptide vaccines can be made by chemical synthesis, making them suit-

able for cost-effective production [18]. However, finding the best epitope peptide candidate

from the whole antigen is challenging. A pipeline of peptide screening using immunoinfor-

matics usually starts from MHC-binding peptide, immunogenicity, cross-reactivity with

human proteome, conservancy, allergenicity, to toxicity predictions. Moreover, an immunoin-

formatics prediction classified the peptides into three categories: strong-binder, weak-binder,

and non-binder, without incorporating the molecular binding mechanism. For this reason,

the detail behind the molecular aspect that discriminates strong/weak-binder from non-binder

is interesting to be studied. Major Histocompatibility Complex (MHC) is a critical protein that

binds the antigenic peptide and presents it on the cell surface to be recognized by the T-cell

receptor, followed by the activation and maturation of the T-cell to fight the infected cell in the
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future [20]. Therefore, the mechanism of peptide-MHC binding is essential to be studied in

the exploratory process of peptide vaccine design.

Molecular dynamics simulation is a powerful method to study the molecular interaction

and energies between MHC and peptides [21–25]. Furthermore, coarse-grained MD (CGMD)

simulations have been used in many studies to accelerate the timescale of observation at the

atomic level, thus enabling us to analyze the interaction more thoroughly than the classical

MD simulation. In addition, CGMD can perform several hundred times faster than the all-

atom MD simulation [26]. Therefore, this study aimed to screen the MHC-binding peptide,

specifically the CTL epitope, of SARS-CoV-2 using immunoinformatics and explain the

molecular mechanism of the difference between strong-, weak-, and non-binder, classified by

NetMHCPan, using CGMD simulation. Immunoinformatics screening using NetMHCPan

and subsequent protocols were used to select peptides that bind MHC-I, are immunogenic,

and are non-toxic to humans. Furthermore, CGMD simulations were expected to identify the

key-specific interactions of the strong-binder with MHC. By understanding the molecular

nature of MHC-peptide behavior explored by CGMD, we hoped to improve the chance of

finding the best peptide for a vaccine candidate. This paper aims to enhance epitope-based

vaccine development by employing molecular dynamics simulations to distinguish between

true positive and false positive binder peptides. It is for the first time that immunoinformatics

screening incorporates the molecular binding mechanisms of peptide-MHC interactions to

validate binding affinities predicted by sequence-based predictor programs.

Methods

Sequences retrieval of complete genes encoding SARS-CoV-2 spike protein

The genetic sequences encoded the Spike (S) viral proteins from Wuhan clinical data corre-

sponding to the accession number EPI_ISL_529967 deposited in the GISAID repository

(https://www.gisaid.org/). Subsequently, the FASTA formatted sequences of this protein were

defined as a query sequence in T-cell epitope predictions. As for the other variant of SARS-

CoV-2, such as Delta and Omicron, we use the CoVariants web server (https://www.covariant.

org/) that provides an overview of SARS-CoV-2 variants and mutations that are of interest.

We have placed the workflow diagram of this study in Fig 1.

Immunoinformatics-based screening of SARS-CoV-2 spike T-cells epitope

peptide candidates

Prediction of Cytotoxic T Lymphocytes cell epitope peptides. Identification and selec-

tion of spike epitope peptides against Cytotoxic T Lymphocyte cells (CTL) across distinctive

HLA alleles of the Wuhan SARS-CoV-2 sequence were carried out using the NetMHCpan-4.1

server (http://www.cbs.dtu.dk/services/NetMHCpan-4.1/) [27,28]. All of the parameters used

were default parameters. Nonameric peptide epitopes were selected. The HLA-A*02:01 super-

type was used in the search algorithms. The epitope peptide candidates from NetMHCpan-4.1

were ranked according to the Eluted Ligand (EL) score, the likelihood of a peptide being an

MHC ligand, and the binding level as a category of their binding strength to MHC.

Prediction of immunogenicity. Immunogenicity is a characteristic property of peptide

epitopes that can elicit an immune response since it is not sufficiently represented by its high

binding affinity to HLA alleles. The IEDB immunogenicity tool (http://tools.iedb.org/

immunogenicity/) was used to generate a list of immunogenic CTL epitopes, which is pre-

dicted based on the physicochemical properties of amino acids and their specific positions.

Specifically, amino acids with large and aromatic side chains and positions 4–6 are more
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important to the peptide’s immunogenicity.[29] The ranking was conducted by sorting from

lower to higher immunogenicity scores.

Cross-reactivity and conservancy analysis. All the immunogenic CTL epitopes obtained

were used to search against human (Homo sapiens) proteome data from the UniProtKB data-

base (2021_04 release 225,619,586 sequences as of the date 16 December 2021) for any matches

to human proteome to avoid cross-reactivity. For this purpose, the Multiple Peptide Match

tool (https://research.bioinformatics.udel.edu/peptidematch.jsp) of Protein Information

Resource was used [30]. For the conservancy analysis, we manually aligned and matched each

Fig 1. The workflow. The flow of the work done in this study, from the immunoinformatics screening to the in silico and in
vitro analysis of peptide–MHC interaction, is shown in the figure.

https://doi.org/10.1371/journal.pone.0292156.g001

PLOS ONE Explaining the binder and nonbinder classification of cytotoxic T-cell epitope using CGMD

PLOS ONE | https://doi.org/10.1371/journal.pone.0292156 October 5, 2023 4 / 22

https://research.bioinformatics.udel.edu/peptidematch.jsp
https://doi.org/10.1371/journal.pone.0292156.g001
https://doi.org/10.1371/journal.pone.0292156


of the selected epitope peptides with the complete sequences of the spike protein of SARS-

CoV-2 Wuhan, Delta variant, and Omicron variant.

Allergenicity and toxicity prediction. AllerCatPro version 1.8 (https://allercatpro.bii.a-

star.edu.sg/) was used to predict the allergenic potential of proteins based on the similarity of

their 3D protein structure and their amino acid sequence. It is compared with a data set of

known protein allergens comprising 4,180 unique allergenic protein sequences derived from

the union of the major databases Food Allergy Research and Resource Program, Comprehen-

sive Protein Allergen Resource, WHO / International Union of Immunological Societies, Uni-

ProtKB, and Allergome [31]. Toxinpred (https://webs.iiitd.edu.in/raghava/toxinpred.php) was

also used to identify highly toxic or non-toxic peptides from many peptides submitted by a

user. It predicts their toxicity and all the critical physicochemical properties, e.g., hydrophobic-

ity, charge, and isoelectric point [32].

Template-based docking using homology modeling. The predictive structures of post-

screening epitope peptide candidates in complex with MHC class I (HLA-A*02:01) were gen-

erated by homology modeling using the MODELLER 10.2 program [33]. The structure of the

peptide-major histocompatibility complex obtained from the Protein Data Bank (PDB ID:

1I7U) was used as a reference model [34]. A few residues in the peptide, called anchor residues,

bind to specific pockets on the MHC class I, resulting in some specificity of interactions with

MHC, which is also used as the basis for modeling and determining the coordinates of the pep-

tide position.

Coarse-grained molecular dynamics (CGMD) simulations. The 3 μs-length simulations

were conducted using Amber20 for five different epitope peptide—MHC complex systems,

which are obtained by immunoinformatics prediction. The SIRAH 2.0 force field was used to

perform a CGMD simulation of protein in an explicit solvent [35]. In this system, explicit

water (WT4) and 0.15 M of sodium and chloride ions were added to octahedral box systems.

The mapping to the CG model was then applied to those systems. Two minimization stages

were performed to get the lowest energy. The Langevin thermostat was used for the initial

heating in the NVT ensemble, followed by an anisotropic Barendsen weak-coupling barostat

up to 310K to simulate a human body temperature of about 37˚C. Position-restrained equili-

bration simulations were run in the NPT ensemble for 5 ns in duration, followed by the final

25 ns equilibration stage with all position restraints removed. The time step of 20 fs was used.

The particle mesh Ewald method (PME) handled long-range electrostatics for protein, water,

and ions interactions.

Trajectory analysis and visualization

The RMSD and distance analysis was performed using the cpptraj program to observe the con-

formational structure of the peptide-MHC complex. The binding energy of the peptide-MHC

complex was computed using MM/PBSA methods every 300 ns during simulations, and the

interaction energy between the peptide and its closest residue within 5 Å was calculated using

MM/PBSA method. Visual Molecular Dynamics (VMD) was used to visualize the peptide

binding to MHC class I, while data visualizations were carried out using ggplot and matplot in

Jupyter-lab. We also performed an alanine-scanning analysis on each representative confor-

mation of systems using the FoldX plugin in the YASARA program to examine anchor resi-

dues’ role in each epitope peptide candidate.

Statistical analysis of the binding category

The statistical analysis was calculated by Dixon’s Test, Shapiro-Wilk normality test, Bartlett

test of homogeneity of variances, Welch’s ANOVA, and Games-Howell multiple comparisons
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using R in Jupyterlab. Dixon’s test was used to recognize the outlier or suspicious observation

in the sample [36,37]. After that, the Shapiro-Wilk test was done to examine if the binding free

energy variable is normally distributed in some populations or not [38,39]. It will quantify the

similarity between the observed and normal distributions as a single number, then compute

which percentage of the sample overlaps with it. Bartlett’s test variance assumes that variances

are equal across groups or samples, which is called homogeneity of variances, and this test can

be used to verify that assumption [40,41]. Welch’s ANOVA is used as a major alternative to

the ANOVA F test under variance heterogeneity [42,43]. Finally, the Games-Howell test was

conducted to distinguish the binding level categories of the peptide [44,45].

The pMHC stability assay

The stability of SARS-CoV-2 peptide–MHC complexes, MHC I-Strep HLA-A*0201–

YLQPRTFLL (IBA Lifesciences GmbH, Germany) were measured in vitro using Surface Plas-

mon Resonance (SPR). The surface of the gold chip sensor was functionalized with streptavi-

din (Sigma-Aldrich, Singapore) prior to the assay. First, the gold chip was immersed in

piranha solution (Conc. H2SO4: 30% H2O2 = 3:1) to remove contaminants on the surface.

Afterward, the gold chip was soaked in 10 mM 3-MPA overnight to functionalize it with the

carboxylic group on the surface. Then, the gold chip was soaked in the EDC-NHS mixture (0.4

M EDC and 0.1 M Sulfo-NHS) for 1 hour to activate the carboxylic group. Following the acti-

vation, 50 μg/mL streptavidin (in acetic buffer pH 4.5) was immobilized by dropping the solu-

tion on the gold chip sensor’s surface and incubating for 30 min. The streptavidin-coated gold

chip was blocked by 1% BSA in 1X PBS pH 7.4 to prevent an unspecific binding site. Finally,

the gold chip was rinsed using 1X PBS pH 7.4 on each immobilization step to remove

unreacted reagents. The streptavidin-coated gold chip was assembled in Nano SPR 8 instru-

ment (Nano SPR, USA) and equilibrated with 1X PBS pH 7.4 with a 10 μL/min flow rate.

Then, 50 mM pMHC complex in 1X PBS pH 7.4 was introduced to the chip with a flow rate of

10 μL/min for 20 min. To monitor the dissociation of the pMHC complex, 1X PBS pH 7.4 con-

tinuously flowed through the chip with a flow rate of 10 μL/min for 200 min. The SPR

response was recorded as sensorgram (RU/min) and analyzed using the Langmuir Adsorption

Isotherm Model.

Results

SARS-CoV-2 spike T-cells epitope peptide candidates from

immunoinformatics screening

The prediction of CTL epitope peptides against SARS-CoV-2 was performed using immunoin-

formatics screening with several selection steps to obtain the most potential epitope peptide.

This epitope prediction was conducted using NetMHCpan1, based on its affinity to

HLA-A*02:01 as the most widespread supertype [46,47]. Further, it was sorted by the immu-

nogenicity and affinity score parameters. This process resulted in a list of 47 nonameric pep-

tides of SARS-CoV-2 spike protein that bind to HLA-A*02:01 and are categorized as strong-,

weak-, and non-binder (Table 1). The top two peptides are FIAGLIAIV (FIA) and

YLQPRTFLL (YLQ), which had the highest immunogenicity and affinity score, labeled as the

strong-binder. The EQDKNTQEV (EQD) and VYDPLQPEL (VYD) with the lowest affinity

score were taken as the weak-binder. Whereas the TNGTKRFDN (TNG) was chosen as the

non-binder due to its zero EL score. It is worth noting that based on the multiple-sequence

alignment, these peptides were conserved among the wild type of SARS-CoV-2 and other vari-

ants of concern. Thus, suggesting broad coverage protection when these peptides are
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Table 1. The SARS-CoV-2 spike T-cells epitope peptide candidates.

No. MHC Peptide Score EL Affinity

(nM)

Bind

Level

Immunogenicity

Score

Autoimmune

Indication

Toxicity

Prediction

Allergenicity

Prediction

1 HLA-A*02:01 FIAGLIAIV 0.641405 6.61 SB 0.27206 No Non—Toxin Non—Allergen

2 HLA-A*02:01 YLQPRTFLL 0.971198 4.30 SB 0.13050 No Non—Toxin Non—Allergen

3 HLA-A*02:01 VVFLHVTYV 0.741670 17.07 SB 0.12780 No Non—Toxin Non—Allergen

4 HLA-A*02:01 NLNESLIDL 0.618877 89.53 SB 0.05239 No Non—Toxin Non—Allergen

5 HLA-A*02:01 VLNDILSRL 0.938498 22.77 SB 0.03000 No Non—Toxin Non—Allergen

6 HLA-A*02:01 GLTVLPPLL 0.622173 100.50 SB 0.01706 No Non—Toxin Non—Allergen

7 HLA-A*02:01 RLDKVEAEV 0.825045 46.73 SB 0.01617 No Non—Toxin Non—Allergen

8 HLA-A*02:01 RLNEVAKNL 0.652653 246.13 SB -0.01010 No Non—Toxin Non—Allergen

9 HLA-A*02:01 KIADYNYKL 0.864611 23.08 SB -0.10379 No Non—Toxin Non—Allergen

10 HLA-A*02:01 LLFNKVTLA 0.803506 12.82 SB -0.11337 No Non—Toxin Non—Allergen

11 HLA-A*02:01 SIIAYTMSL 0.580032 20.36 SB -0.12935 No Non—Toxin Non—Allergen

12 HLA-A*02:01 ALNTLVKQL 0.657403 563.85 SB -0.18466 No Non—Toxin Non—Allergen

13 HLA-A*02:01 VLYENQKLI 0.495902 359.26 SB -0.20427 No Non—Toxin Non—Allergen

14 HLA-A*02:01 RLQSLQTYV 0.873760 11.92 SB -0.29331 No Non—Toxin Non—Allergen

15 HLA-A*02:01 HLMSFPQSA 0.798454 41.79 SB -0.31433 No Non—Toxin Non—Allergen

16 HLA-A*02:01 TLDSKTQSL 0.914998 175.75 SB -0.52715 No Non—Toxin Non—Allergen

17 HLA-A*02:01 VTWFHAIHV 0.221377 134.02 WB 0.38925 No Non—Toxin Non—Allergen

18 HLA-A*02:01 SVTTEILPV 0.216735 147.18 WB 0.25860 No Non—Toxin Non—Allergen

19 HLA-A*02:01 ALLAGTITS 0.112596 729.27 WB 0.24031 No Non—Toxin Non—Allergen

20 HLA-A*02:01 KLPDDFTGC 0.334903 450.41 WB 0.20308 No Non—Toxin Non—Allergen

21 HLA-A*02:01 NTQEVFAQV 0.227439 497.10 WB 0.17889 No Non—Toxin Non—Allergen

22 HLA-A*02:01 VLSFELLHA 0.350734 118.62 WB 0.16070 No Non—Toxin Non—Allergen

23 HLA-A*02:01 PLVDLPIGI 0.115844 1130.35 WB 0.14660 No Non—Toxin Non—Allergen

24 HLA-A*02:01 YQPYRVVVL 0.189014 1377.75 WB 0.14090 No Non—Toxin Non—Allergen

25 HLA-A*02:01 QLNRALTGI 0.093590 513.78 WB 0.13020 No Non—Toxin Non—Allergen

26 HLA-A*02:01 FCNDPFLGV 0.213279 555.89 WB 0.13006 No Non—Toxin Non—Allergen

27 HLA-A*02:01 FLHVTYVPA 0.098767 34.61 WB 0.11472 No Non—Toxin Non—Allergen

28 HLA-A*02:01 ELLHAPATV 0.336419 386.28 WB 0.11231 No Non—Toxin Non—Allergen

29 HLA-A*02:01 FQFCNDPFL 0.369084 10.54 WB 0.05737 No Non—Toxin Non—Allergen

30 HLA-A*02:01 YTNSFTRGV 0.121645 328.00 WB 0.04545 No Non—Toxin Non—Allergen

31 HLA-A*02:01 FTISVTTEI 0.375875 58.89 WB 0.04473 No Non—Toxin Non—Allergen

32 HLA-A*02:01 ILDITPCSF 0.131257 2524.42 WB 0.02632 No Non—Toxin Non—Allergen

33 HLA-A*02:01 LQIPFAMQM 0.157345 863.81 WB -0.03301 No Non—Toxin Non—Allergen

34 HLA-A*02:01 GINASVVNI 0.137188 1383.16 WB -0.05391 No Non—Toxin Non—Allergen

35 HLA-A*02:01 LLALHRSYL 0.095947 353.28 WB -0.06002 No Non—Toxin Non—Allergen

36 HLA-A*02:01 VYDPLQPEL 0.196623 8641.52 WB -0.07466 No Non—Toxin Non—Allergen

37 HLA-A*02:01 VLYQGVNCT 0.160345 733.09 WB -0.08286 No Non—Toxin Non—Allergen

38 HLA-A*02:01 YVTQQLIRA 0.091708 3246.41 WB -0.08464 No Non—Toxin Non—Allergen

39 HLA-A*02:01 ELDSFKEEL 0.148970 4841.91 WB -0.10527 No Non—Toxin Non—Allergen

40 HLA-A*02:01 LITGRLQSL 0.098152 3501.50 WB -0.10776 No Non—Toxin Non—Allergen

41 HLA-A*02:01 KQIYKTPPI 0.171701 118.46 WB -0.14982 No Non—Toxin Non—Allergen

42 HLA-A*02:01 MIAQYTSAL 0.176384 105.71 WB -0.18768 No Non—Toxin Non—Allergen

43 HLA-A*02:01 EQDKNTQEV 0.112759 8085.04 WB -0.21882 No Non—Toxin Non—Allergen

44 HLA-A*02:01 RVYSTGSNV 0.164307 1163.21 WB -0.24137 No Non—Toxin Non—Allergen

45 HLA-A*02:01 SLSSTASAL 0.243351 435.97 WB -0.26230 No Non—Toxin Non—Allergen

46 HLA-A*02:01 ALGKLQDVV 0.173341 852.18 WB -0.28300 No Non—Toxin Non—Allergen

(Continued)
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developed as a vaccine. Moreover, these peptides also pass the immunoinformatics screening

using the predictions of cross-reactivity with the human proteome, conservancy, allergenicity,

and toxicity. Nevertheless, this study is limited to including Wild-Type, Omicron, and Delta

variants. The recent XBB variant has yet to be added to the conservancy analysis. Furthermore,

the selected peptides were modeled into peptide-MHC complex and simulated using CGMD

to investigate the molecular aspect behind the binder and non-binder classification.

Dynamics behavior of binder and non-binder peptides with MHC

We performed root-mean-square deviation (RMSD) and distance analysis from the three

microseconds of CGMD trajectories. The RMSD data was presented by density plot to show

the deviation of structure from its initial state, so it can be used to compare changes or shifts in

protein conformation. It is revealed that MHC and strong-binder FIA and YLQ systems have

lower average RMSD values, about 7.3 and 6.8 Å, respectively. Moreover, the RMSD histogram

of the MHC and strong-binder peptide synchronized in the distance less than 5 Å regions

along the simulations, indicating the perseverance of the binding between the peptides and the

MHC’s antigen binding groove residues (Fig 2). Although the weak-binder VYD displays a

similarly low average RMSD value with strong-binder (i.e., 6.4 Å), the most populous RMSD

density is higher than 5 Å. Another weak-binder EQD reached 9.5 Å while the non-binder

TNG was 8.8 Å. This result indicated that the MHC binding with strong-binder FIA-YLQ is

more favorable than the weak-binder VYD-EQD and non-binder TNG.

Distance analysis was conducted using the cpptraj program on Ambertools21 to show the

average distance between the center of mass at the MHC and the peptides (Fig 3). The distance

between the two molecules during the 3 μs of simulations is proportional to the stability of the

binding. It is shown that both strong-binder peptides have a stable average distance,

Table 1. (Continued)

No. MHC Peptide Score EL Affinity

(nM)

Bind

Level

Immunogenicity

Score

Autoimmune

Indication

Toxicity

Prediction

Allergenicity

Prediction

47 HLA-A*02:01 KIYSKHTPI 0.161841 463.64 WB -0.32094 No Non—Toxin Non—Allergen

The SARS-CoV-2 spike T-cells epitope peptide candidates against HLA-A*02:01 based on the immunoinformatic screening. Peptides selected for strong-, weak-, and

non-binder are highlighted in bold.

*SB: Strong Binder; WB: Weak Binder.

https://doi.org/10.1371/journal.pone.0292156.t001

Fig 2. The RMSD analysis. The RMSD of MHC class I (HLA-A*02:01) and its epitope peptides from immunoinformatic screening; non-binder, weak-binder,

and strong-binder as a histogram data showed the distribution of each RMSD value in all three CGMD systems during 3 μs of simulation.

https://doi.org/10.1371/journal.pone.0292156.g002
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represented by high peak densities of around 18.5 and 19.5 Å. The weak-binder EQD and

non-binder TNG peptides had a farther distance, approximately 21 Å, while that of the weak-

binder VYD is about 23 Å with a broader deviation range.

Energetics of binding interactions between T-cell epitope peptides and MHC

The binding energy between the MHC and each peptide was calculated using the MMPBSA

method at 300 ns intervals. The strong-binder peptides consistently showed a negative binding

energy value, indicating a favorable binding. In contrast, the weak- and non-binder presented

a positive value (Fig 4). The non-binder peptide has the highest binding energy that reaches

+20 kcal/mol, while the strong-binder FIA has the lowest at around -16 kcal/mol. Therefore,

these results are consistent with the RMSD and distance analysis (Figs 1 and 2). The strong-

binder peptides have the strongest binding energy against MHC, followed by the weak-binder

and non-binder, which is interestingly in line with the binding classification predicted by

immunoinformatics.

Fig 4 suggested that the non-binder is qualitatively different from the weak-binder in terms

of their binding energy values, while that of strong-binder was clearly different with both non-

and weak-binder. Furthermore, we conducted an inferential statistics procedure to clarify our

findings. The outlier in the MMPBSA values for every group was analyzed using the box-plot

method. However, four potential outliers from the weak-binder were not confirmed by Dixon’s

test (Table 2). The normality of binding energy values for each peptide was checked using the

Shapiro-Wilk test. The test showed that MMPBSA values of all peptides are normally distrib-

uted (all p-values are above 0.05). Since the Bartlett test suggested that the variance among the

Fig 3. The distance analysis. The distance parameter between the center of mass of MHC class I (HLA-A*02:01) and its epitope peptides from

immunoinformatic screening during three μs of coarse-grained molecular dynamics simulations.

https://doi.org/10.1371/journal.pone.0292156.g003

Fig 4. The binding free energy analysis. The binding free energy of MHC class I (HLA-A*02:01) and the epitope peptides from immunoinformatic screening

were calculated by 300 ns intervals using MMPBSA methods. The grey line shows a zero value of energy.

https://doi.org/10.1371/journal.pone.0292156.g004
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MMPBSA values is not homogenous, then the Welch analysis of variance (ANOVA) was used.

It is shown that MMPBSA values among the three binding categories are statistically different

(p-value = 3.27e-14). Furthermore, the post-hoc step using the Games-Howell test supports our

finding that the strong-binder significantly differed with both non and weak-binders. Mean-

while, the difference in MMPBSA values between non- and weak-binders is not statistically sig-

nificant (Fig 5). Despite the meaningful classification of binder and non-binder from an

energetics point of view, it still lacks detail at the molecular level. Therefore, further investiga-

tion on the residual interactions between peptides and MHC is conducted to explore the key or

anchor residues of the peptides that determine the strong binding.

Computational alanine-scanning analysis of T-cell epitope peptides

The Alanine-scanning principle is to mutate every amino acid to alanine without moving the

neighbors and produce a file with the resulting free Gibbs energies of alanine mutation. It is

Table 2. The statistical analysis of binder and non-binder peptide classifications.

The Dixon’s Test

Data Q p-value

WB-EQD 0.10531 0.6413

The Shapiro–Wilk Test

Systems Coefficient of concordance (W) p-value

NB–TNG 0.96543 0.8455

WB–EQD 0.92719 0.4208

WB–VYD 0.89537 0.1947

SB–FIA 0.96164 0.8044

SB–YLQ 0.94666 0.6292

The Bartlett Test

K-squared Degree of freedom p-value

33.091 4 0.000001144

Welch’s ANOVA

n Statistic Degree of Freedom in Numerator Degree of Freedom in

Denominator

p-value

50 123.4 4 20.87621 3.27e-14

The Games-Howell Test

Group 1 Group 2 Estimate Lower bound confidence

interval

Higher bound

confidence

interval

p-adjusted p-adjusted significance

NB-TNG SB-FIA -21.86083 -30.633795 -13.087865 9.40e-05 ****
NB-TNG SB-YLQ -16.32350 -25.171493 -7.475507 7.77e-04 ***
NB-TNG WB-EQD -0.35021 -9.396270 8.695850 1.00e+00 ns

NB-TNG WB-VYD -7.34352 -16.212933 1.525893 1.21e-01 ns

SB-FIA SB-YLQ 5.53733 2.830522 8.244138 1.74e-04 ***
SB-FIA WB-EQD 21.51062 17.514984 25.506256 2.39e-08 ****
SB-FIA WB-VYD 14.51731 11.613838 17.420782 9.49e-09 ****
SB-YLQ WB-EQD 15.97329 11.656552 20.290028 5.37e-08 ****
SB-YLQ WB-VYD 8.97998 5.537714 12.422246 2.79e-06 ****

WB-EQD WB-VYD -6.99331 -11.396393 -2.590227 1.00e-03 ***

The statistical analysis of the binding category in classifying T-cell peptide epitope candidates from Immunoinformatic screening.

*SB: Strong Binder; WB: Weak Binder; NB: Non Binder.

https://doi.org/10.1371/journal.pone.0292156.t002
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helpful for a fast scan, given that the anchor residues have an essential role in the binding of

the peptide to MHC class I (HLA-A*02:01). Based on the results, T-cell epitope candidates

from immunoinformatics screening showed that most of the anchor residues in both strong-

binder FIA and YLQ have a positive value, which means alanine mutation destabilizes the

interaction between the peptide and MHC. In contrast, the alanine mutation in weak-binder

EQD, VYD, and non-binder TNG resulted in negative free Gibbs energy, indicating that the

original amino acid was less favorable than the alanine interaction with the MHC (Fig 6).

Fig 5. The differences of statistical significance for each binding category. The statistical graph of the binding category of peptide classification is based on

the MMPBSA energy. The asterisk symbol shows the significant level of difference in each category, and the “ns” represent the non-significant statement.

https://doi.org/10.1371/journal.pone.0292156.g005
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Moreover, residue-2 was also revealed as the determinant anchor residue in categorizing

the binding level of the peptides. It is shown in the alanine scanning analysis that either only

residue-2 or both with residue-9 resulted in positive energy value in strong-binder peptides.

Whereas in the weak-binder, only residue-9 has a positive value but not residue-2. As for the

non-binder, both residues 2 and 9 have negative energy values. Therefore, residues 2 and 9

were suggested to affect the peptide binding capability towards MHC. This result is consistent

with previous studies; those primary anchor residues are only presented by residues 2 and 9,

while residues 3, 6, and 7 are as auxiliary or secondary [48,49]. It is noted that the other resi-

dues 1, 4, 5, and 8 were known as suboptimal residues in the peptide-MHC interaction. Instead

of interacting with the MHC, the suboptimal residues directly interact with the T-cell receptor

during the antigen-presenting process [48,50,51].

The residual-scale analysis on the interactions between the epitope peptides and

HLA-A*02:01 suggested the contribution of each amino acid property in the peptide

sequence. In general, the number of interactions between the MHC and strong-binder pep-

tides was higher than that of weak- and non-binder peptides. Moreover, the interactions

between non-binder and strong-binder to HLA-A*02:01 are different, which is presented in

their binding site. The complementarity between MHC and peptide was not shown in non-

binder because both residue-2 and residue-9 are the polar asparagine. In contrast, the

strong-binder showed a good binding with MHC due to the presence of isoleucine at resi-

due-2 to fit in the B-pocket and valine at residue-9 to fit in the F-pocket (Fig 7A and 7B).

The distinctive MMPBSA energy of the residue-2 in strong-binder compared to weak- and

non- binders is shown in Fig 7D. These results suggest that the specificity factor of primary

anchor residue-2 and 9 can contribute significantly to the residual interactions with the

MHC, consistent with the previous study [48].

Furthermore, the anchor residue-2 showed a better role than residue-9 in differentiating

binding categories; the strong-binder FIA has the lowest interaction energy, followed by

strong-binder YLQ, then weak-binder VYD and EQD. Asparagine at the second residue of

non-binder TNG showed positive binding free energy values, indicating that polar moiety is

not compatible with the hydrophobic B-pocket of MHC-I. On the other hand, the non-polar

isoleucine and leucine from the strong-binder peptides promote the hydrophobic interaction,

similar to tryptophan in weak-binder VYD. However, since tryptophan in VYD also forms

electrostatic interactions with the B-pocket, it decreases the hydrophobic forces between them.

This phenomenon was also observed in weak-binder EQD, where glutamine at the second res-

idue also facilitates electrostatic interaction and hydrogen bonds. Thus, it decreased the bind-

ing affinity between EQD and the hydrophobic site of the MHC-I, close to zero (Fig 7D).

Fig 6. The alanine-scanning analysis. The alanine-scanning analysis of the T-cell epitope peptide’s structure was extracted from the stable conformation in a

frame of the 2-μs simulation. The negative value indicated the favorability of alanine mutation, while the positive is not. The red area showed the anchor

residue position in each nonameric peptide.

https://doi.org/10.1371/journal.pone.0292156.g006
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The strong-binders and weak-binders have the same hydrophobic residue-9, i.e., leucine

and valine. It facilitated the hydrophobic interaction that retains the binding of peptide and

MHC. Conversely, the non-binder has a polar asparagine which is incompatible with the

hydrophobic F-pocket of MHC. This analysis is consistent with the binding free energy

decomposition calculations in Fig 7D.

SPR analysis confirmation of strong-binder YLQ peptide

SPR measurements are used to determine the stability or ability of peptides to bind by pMHC.

YLQ peptide bound by pMHC flowed into the binding chamber above the SPR gold plate,

which had previously been immobilized with streptavidin. The binding of pMHC-peptide by

streptavidin showed a response, as shown in Fig 8A. In determining its performance, an

adsorption kinetics analysis was used using Anabel 2.3 software with the regression results

shown in Fig 8B and 8C and the results are shown in Table 3.

From the adsorption kinetics analysis results, the pMHC-YLQ association rate (kass) obtained

was 22247.7 M-1. Then, to investigate the strength of the peptide bond with pMHC in terms of its

dissociation response. The pMHC-YLQ dissociation rate (kdiss) obtained was YLQ = 0.001662 s-1.

The value of the affinity constant (KD) also corresponds to the results above, i.e., 7.50 x 10−8 M.

The smaller the KD value, the stronger the bond will be. The binding energy can be calculated

using the equation ∆G = RT Ln KD where R is the universal gas constant, and T is the room tem-

perature in Kelvin. The calculations show that the pMHC-YLQ binding energy is -9.5513 kcal/

mol. The stability was then observed through residence time (t1/2), and the value obtained was

416.9675 s.

Fig 7. The molecular detail of peptide-MHC binding mechanism. The interactions of each T-cell epitope peptide with HLA-A*02:01; (a) non-binder and (b)

strong-binder peptide. (c) The sequence of all the nonameric epitope peptides and their position. (d) The binding free energy decomposition analysis of

residue-2 and 9 was calculated using the MMPBSA method.

https://doi.org/10.1371/journal.pone.0292156.g007
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This finding is consistent with the binding energy calculation on their residual interactions.

Experimental analysis on the strong-binder YLQPRTFLL using nanoSPR displayed a high

affinity towards HLA-A*02:01. For the first time, YLQPRTFLL was systematically studied

from immunoinformatics screening, molecular dynamics simulation, computational binding

energy, to experimental binding energy with MHC using SPR. Altogether, this pipeline pro-

poses YLQPRTFLL as a good candidate for CTL epitope for peptide-based vaccine of SARS--

CoV-2. A similar approach can be utilized to improve the chance of discovering the best

epitope as a vaccine candidate. Our pipeline from immunoinformatics to CGMD and SPR

analysis presented a systematic method for improving the possibility of finding the best CTL

epitope candidates in vaccine development by incorporating the structural aspect of the

prediction.

Discussion

One of the vaccine types that is interesting to study is peptide-based vaccines because of their

broad spectrum against multiple variants and their capability to induce cellular and humoral

immunity with the least risk of allergy and autoimmune to develop [18,52]. It also presented

unique properties regarding selectivity and specificity toward specific targets, making it safe

and stable [6,53]. This recent year, some researchers have been focusing on this platform, as

Fig 8. The kinetics analysis of peptide-MHC binding. The SPR sensorgram of pMHC-peptide binding by streptavidin and peptide release from pMHC(a).

Kinetic analysis of pMHC-YLQ SPR response dynamic using Anabel 2.3 software; association (b) and dissociation (c).

https://doi.org/10.1371/journal.pone.0292156.g008

Table 3. The binding kinetic analysis of peptide–MHC interactions using NanoSPR.

Sample YLQ-MHC I complex

c(Reagent) [M] 5.0 x 10−8

kobs 0.00055

StErr [kobs] 2.27 x 10−6

kdiss 0.001662

StErr [kdiss] 7.72 x 10−6

kass [1/M] 22247.7

StErr (kass) [1/M] 160.9894

KD [M] 7.50 x 10−8

StErr (KD) [M] 6.40 x 10−10

Binding Energy (kcal/mol) -9.5513

t1/2 (Retention Time) (s) 416.9675

https://doi.org/10.1371/journal.pone.0292156.t003
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shown by the number of peptide-based vaccines entering clinical trial phases. There are 178

vaccines in trial phase I and 115 in phase II until 2020, covering various diseases [6]. Referring

to World Health Organization (WHO) reports on the Covid-19 vaccine tracker and landscape,

13 peptide-based vaccines proceed to the preclinical phase. Also, five other candidates (CoVe-

piT, EpiVacCorona, IMP CoVac-1, PepGNP-SARSCoV2, and UB-612) continued in the clini-

cal phase until April 2022 [7]. For instance; CoVac-1 is a multi-peptide-based vaccine

candidate designed to produce widespread and long-term SARS-CoV-2 T-cell immunity simi-

lar to that acquired by natural infection, unaffected by the variants of concern (VOCs). Fur-

thermore, it has a decent safety profile and generates robust T-cell responses following a single

immunization, according to trial phase I [8]. Hence, in this study, we project the peptide-

based vaccine as our platform for the postliminary work.

Our work is restricted to the T-cell epitope candidates since the T-cell vaccines are a prefer-

able source of top-up immunity, notably given that T-cell immunity against SARS-CoV-2

appears to last longer than antibody-mediated responses [9,54]. Interestingly, in the case of

SARS-CoV and MERS-CoV, the T-cell responses against HCoVs are produced despite the

moderate intensity and low frequency in the elderly [54–56]. Moreover, B-cell responses after

SARS-CoV infection are typically short-lived and frequently untraceable within four years. In

contrast, even after 17 years, T-cell responses can still be evoked [16,17]. As for MERS, it

appears to be more powerful and persistent than humoral immunity [57]. To summarize,

when B-cell responses are weak, T-cells appear capable of resolving the infection. T-cell

responses specific to SARS-CoV-2 are required for viral clearance and might prevent further

infection without seroconversion, offer long-term memory, and facilitate viral variant detec-

tion [17,58,59].

Discovering SARS-CoV-2 peptides that elicit T-cell responses experimentally is challenging

due to the vast number of available options to test and the significant genetic diversity of MHC

genes encoded HLA molecules [58]. Thus, prominent tools such as immunoinformatics were

fully explored to accelerate the process and afford promising results. Equally important, this

method will utterly reduce the cost as well as the required time of the research and develop-

ment phase [60,61]. The definite protocols for immunoinformatics are not strictly determined;

they will be different from one another and constantly improve to extend and ensure the valid-

ity of the outputs [62–65]. The immunoinformatics method involves several screening steps to

obtain the most potential T-cell epitope candidates.

In this paper, about 2034 T-cell epitopes, including 416 unique sequences from the S pro-

tein of Wuhan SARS-CoV-2, were generated using The NetMHCPan4.1. Many experiments

are being conducted to design an effective vaccine against SARS-CoV-2. In several of those,

the S protein is considered a reasonable target for the SARS-CoV-2 vaccine since it involves

viral binding, fusion, and entrance into the host cell [66,67]. Moreover, its antigenicity is well-

proven by the commercial vaccine [68,69]. Further, screening parameters such as the Eluted

Ligand (EL) score, affinity, immunogenicity, bind level, and conservancy parameters were

used to estimate the epitope’s effectiveness. The term immunogenicity refers to the ability of a

substance to induce a cellular and humoral immune response, while antigenicity is the ability

to be specifically recognized by the antibodies generated as a result of the immune response to

the given substance [70]. At the same time, the cross-reactivity (autoimmune indication),

allergenicity, and toxicity were evaluated to assess the safety standard. This process was done

based on the 33 supertypes of the HLA population worldwide. The promiscuous epitope can-

didates were selected based on their binding with HLA-A*02:01, with the highest prevalence

among other supertypes [71,72].

Around 47 T-cell epitope candidates (Table 1) were classified as strong-binder and weak-

binder peptides towards HLA-A*02:01. The NetMHCPan4.1 program predicts and
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discriminates T-cell epitope candidates into three bind levels or binding categories; non-

binder, weak-binder, and strong-binder. The top two on the list are strong-binder FIA and

YLQ. Interestingly, both show the differences between each binding category in the almost all

assessment parameters from the trajectory of CGMD, such as RMSD, distance, and MMPBSA

energy (Figs 2–4). Although some of these epitopes have been discovered in previous studies

[73,74], this paper, for the first time, explains the molecular detail of MHC-peptides interac-

tions. We also confirm that based on the statistical analysis of its energy, the non- and weak-

binder categories are quite similar, while the strong-binder is significantly different from the

other categories (Fig 5). In addition, the alanine-scanning analysis also presented that the

anchor residues in strong-binder peptides are essential for the binding to HLA-A*02:01. On

the contrary, the alanine mutation in the several anchor residues of non- and weak-binder is

not very influential (Fig 6). The significance of the anchor residue of the peptides in its binding

with MHC is widely known and studied [51,75,76]. The pockets B and F in MHC-I are critical

for peptide recognition and correlated to the binding region of the N- and C-terminus of the

peptide, respectively. These two pockets are responsible for accommodating specific anchor

residues from the peptide and are thus crucial for peptide specificities [76]. The presence of

these well-defined anchor residues and anchoring grooves, which provide stability necessary

for allele-specific recognition, helps to explain why each allelic form of class I molecule binds a

diverse yet specified spectrum of peptides [77].

Before the CGMD simulation, we prepared the initial conformation of the peptide-MHC

complex using protein-peptide docking. However, we identified at least three major challenges

to protein-peptide docking: (i) modeling significant conformational changes of both peptide

and protein molecules (flexibility problem); (ii) selection of the highest accuracy structure out

of many generated models (scoring problem); and (iii) integration of experimental data and

computational predictions into the protein–peptide docking scheme (integrative modeling)

[78]. Interaction details between peptide epitopes and MHC-I molecules have been known,

where the peptides anchor to the MHC-I binding pockets through their second and last resi-

dues. Such knowledge benefits us from employing the template-based docking method that

utilizes homology modeling to prepare peptide-MHC (pMHC) complexes studied in this

work. A similar approach has also been adopted by PANDORA, a technique to model pHMC

with a success rate of 93% [79].

The peptide-MHC overall interactions are notably contributed by the binding of primary

anchor residue-2 (P2) with the highly hydrophobic B pocket and residue-9 (P9) with the F

pocket carrying neutral charges. These findings are consistent with previous studies that

showed the P2 and P9 or PO as the primary anchor of HLA-A*02:01 [80,81]. Hence, the C-ter-

minal did not allow any charged amino acids. The P2 in the strong-binder peptides are Isoleu-

cine and Leucine (FIAGLIAIV–YLQPRTFLL), the branched hydrophobic amino acids, and

therefore it fits naturally with the B pocket in MHC class I. On the other hand, in weak-binder

(VYDPLQPEL), there is Tryptophan, the large aromatic amino acid with an indole ring that

fits less. Also, the polar amino acids Glutamine (EQDKNTQEV) and Asparagine

(TNGTKRFDN) in weak- and non-binder peptides are incapable of binding to the B pocket.

Furthermore, the P9 in strong- and weak-binder peptides (FIAGLIAIV—YLQPRTFLL and

EQDKNTQEV—VYDPLQPEL) are uncharged and have a good affinity towards the F pocket

by promoting hydrophobic interactions. Whereas in non-binder TNGTKRFDN, the P9 is

asparagine with a positive charge. Based on the interaction data (Fig 6A–6D), we can observe

that the central region of peptides rarely involves in the binding with MHC. This finding

agrees with the previous work by Szeto et al., which observed YLQPRTFLL, the same one that

was included in the strong-binder category in our study. It is observed that P4 –P5 and P8

interact with CDR1α, CDR3α, and CDR1-3β in TCR [73]. The N-terminal location for TCR
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binding may be inherently suboptimal, resulting in low affinities and encouraging escape from

negative selection. On the other hand, a higher affinity can be obtained by focusing on the cen-

tral or occasionally C-terminal region of peptides, which are probably more suitable locations

for TCR binding [50,82,83]. The interaction energy of P1 in the N-terminal is observed to be

the highest, which is consistent with the other CG simulation of peptide detachment from the

MHC. It is found that the detachment phases typically begin C-terminally, with the N-terminal

end following later and more slowly [84].

About the measurement method of T-cell response titer, there are several ways that can be

used. One method is the enzyme-linked immunospot (ELISPOT) assay, which measures the

number of cytokine-producing T cells in response to a specific antigen [85]. Another method

is flow cytometry, which can be used to quantify the number of T cells expressing specific sur-

face markers or intracellular cytokines [86]. Additionally, the enzyme-linked immunosorbent

assay (ELISA) can be used to measure the concentration of specific cytokines or other mole-

cules produced by T cells [87]. These methods provide quantitative measurements of T cell

response titer and can be used to assess the magnitude and quality of T cell responses in vari-

ous contexts, such as infectious diseases, autoimmune disorders, and cancer immunotherapy.

Moreover, the interferon test, commonly known as IGRA, has been widely used to measure T-

cell responses for latent tuberculosis infection [88,89] and Covid-19 diagnostic test [90,91].

Our findings enable vaccine designers to utilize molecular dynamics simulations for definitive

binding category classification. The established concept from this study holds the potential for

subsequent refinement, thereby augmenting the success rate of authentic epitope discovery in

vaccine development.

Acknowledgments

The authors would like to thank the Research Center for Molecular Biotechnology and Bioin-

formatics–Universitas Padjadjaran for providing a computing research facility.

Author Contributions

Conceptualization: Muhammad Yusuf, Ari Hardianto, Neni Nurainy, Acep Riza

Wijayadikusumah, Ines Irene Caterina Atmosukarto, Toto Subroto.

Data curation: Muhammad Yusuf, Wahyu Widayat, Yosua Yosua, Angelica Shalfani

Tanudireja, Farhan Azhwin Maulana, Umi Baroroh.

Formal analysis: Muhammad Yusuf, Wanda Destiarani, Wahyu Widayat, Yosua Yosua,

Gilang Gumilar, Angelica Shalfani Tanudireja, Fauzian Giansyah Rohmatulloh, Farhan

Azhwin Maulana, Umi Baroroh, Ari Hardianto, Rani Maharani.

Funding acquisition: Muhammad Yusuf.

Investigation: Muhammad Yusuf, Wahyu Widayat, Yosua Yosua, Fauzian Giansyah

Rohmatulloh, Farhan Azhwin Maulana, Ari Hardianto.

Methodology: Muhammad Yusuf, Wanda Destiarani, Yosua Yosua, Gilang Gumilar, Ari

Hardianto, Rani Maharani, Neni Nurainy, Ines Irene Caterina Atmosukarto.

Resources: Muhammad Yusuf, Gilang Gumilar, Neni Nurainy, Acep Riza Wijayadikusumah,

Ryan B. Ristandi, Ines Irene Caterina Atmosukarto, Toto Subroto.

Software: Fauzian Giansyah Rohmatulloh.

Supervision: Muhammad Yusuf, Rani Maharani, Neni Nurainy, Acep Riza Wijayadikusumah,

Ryan B. Ristandi, Ines Irene Caterina Atmosukarto, Toto Subroto.

PLOS ONE Explaining the binder and nonbinder classification of cytotoxic T-cell epitope using CGMD

PLOS ONE | https://doi.org/10.1371/journal.pone.0292156 October 5, 2023 17 / 22

https://doi.org/10.1371/journal.pone.0292156


Visualization: Wanda Destiarani, Umi Baroroh, Ari Hardianto.

Writing – original draft: Muhammad Yusuf, Wanda Destiarani.

Writing – review & editing: Muhammad Yusuf, Wanda Destiarani, Ari Hardianto.

References
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